Copied to
clipboard

G = C42.263D4order 128 = 27

245th non-split extension by C42 of D4 acting via D4/C2=C22

p-group, metabelian, nilpotent (class 3), monomial

Aliases: C42.263D4, C42.395C23, C4.972+ 1+4, (C2xC4):4D8, C4:D8:7C2, C8:4D4:8C2, (C4xC8):9C22, C4.72(C2xD8), C22:D8:6C2, C4:C8:60C22, (C2xD8):5C22, C4:Q8:69C22, C4.4D8:11C2, (C4xD4):11C22, C2.15(C22xD8), C22.24(C2xD8), D4:C4:3C22, C4:C4.144C23, C4:1D4:40C22, C4.25(C8:C22), (C2xC4).403C24, (C2xC8).158C23, (C22xC4).493D4, C23.688(C2xD4), (C2xD4).153C23, C42.12C4:26C2, C4:D4.186C22, C22:C8.177C22, (C2xC42).870C22, C22.663(C22xD4), (C22xC4).1074C23, C22.26C24:16C2, (C22xD4).386C22, C2.74(C22.29C24), (C2xC4:1D4):20C2, (C2xC4).864(C2xD4), C2.53(C2xC8:C22), SmallGroup(128,1937)

Series: Derived Chief Lower central Upper central Jennings

C1C2xC4 — C42.263D4
C1C2C4C2xC4C22xC4C22xD4C2xC4:1D4 — C42.263D4
C1C2C2xC4 — C42.263D4
C1C22C2xC42 — C42.263D4
C1C2C2C2xC4 — C42.263D4

Generators and relations for C42.263D4
 G = < a,b,c,d | a4=b4=d2=1, c4=b2, ab=ba, ac=ca, dad=a-1, cbc-1=a2b-1, dbd=a2b, dcd=b2c3 >

Subgroups: 700 in 266 conjugacy classes, 96 normal (26 characteristic)
C1, C2, C2, C4, C4, C22, C22, C22, C8, C2xC4, C2xC4, C2xC4, D4, Q8, C23, C23, C42, C22:C4, C4:C4, C4:C4, C2xC8, D8, C22xC4, C22xC4, C2xD4, C2xD4, C2xQ8, C4oD4, C24, C4xC8, C22:C8, D4:C4, C4:C8, C2xC42, C4xD4, C4xD4, C4:D4, C4:D4, C4.4D4, C4:1D4, C4:1D4, C4:1D4, C4:Q8, C2xD8, C22xD4, C22xD4, C2xC4oD4, C42.12C4, C22:D8, C4:D8, C4.4D8, C8:4D4, C2xC4:1D4, C22.26C24, C42.263D4
Quotients: C1, C2, C22, D4, C23, D8, C2xD4, C24, C2xD8, C8:C22, C22xD4, 2+ 1+4, C22.29C24, C22xD8, C2xC8:C22, C42.263D4

Smallest permutation representation of C42.263D4
On 32 points
Generators in S32
(1 12 26 23)(2 13 27 24)(3 14 28 17)(4 15 29 18)(5 16 30 19)(6 9 31 20)(7 10 32 21)(8 11 25 22)
(1 7 5 3)(2 29 6 25)(4 31 8 27)(9 22 13 18)(10 16 14 12)(11 24 15 20)(17 23 21 19)(26 32 30 28)
(1 2 3 4 5 6 7 8)(9 10 11 12 13 14 15 16)(17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32)
(1 15)(2 14)(3 13)(4 12)(5 11)(6 10)(7 9)(8 16)(17 27)(18 26)(19 25)(20 32)(21 31)(22 30)(23 29)(24 28)

G:=sub<Sym(32)| (1,12,26,23)(2,13,27,24)(3,14,28,17)(4,15,29,18)(5,16,30,19)(6,9,31,20)(7,10,32,21)(8,11,25,22), (1,7,5,3)(2,29,6,25)(4,31,8,27)(9,22,13,18)(10,16,14,12)(11,24,15,20)(17,23,21,19)(26,32,30,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(8,16)(17,27)(18,26)(19,25)(20,32)(21,31)(22,30)(23,29)(24,28)>;

G:=Group( (1,12,26,23)(2,13,27,24)(3,14,28,17)(4,15,29,18)(5,16,30,19)(6,9,31,20)(7,10,32,21)(8,11,25,22), (1,7,5,3)(2,29,6,25)(4,31,8,27)(9,22,13,18)(10,16,14,12)(11,24,15,20)(17,23,21,19)(26,32,30,28), (1,2,3,4,5,6,7,8)(9,10,11,12,13,14,15,16)(17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32), (1,15)(2,14)(3,13)(4,12)(5,11)(6,10)(7,9)(8,16)(17,27)(18,26)(19,25)(20,32)(21,31)(22,30)(23,29)(24,28) );

G=PermutationGroup([[(1,12,26,23),(2,13,27,24),(3,14,28,17),(4,15,29,18),(5,16,30,19),(6,9,31,20),(7,10,32,21),(8,11,25,22)], [(1,7,5,3),(2,29,6,25),(4,31,8,27),(9,22,13,18),(10,16,14,12),(11,24,15,20),(17,23,21,19),(26,32,30,28)], [(1,2,3,4,5,6,7,8),(9,10,11,12,13,14,15,16),(17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32)], [(1,15),(2,14),(3,13),(4,12),(5,11),(6,10),(7,9),(8,16),(17,27),(18,26),(19,25),(20,32),(21,31),(22,30),(23,29),(24,28)]])

32 conjugacy classes

class 1 2A2B2C2D2E2F···2K4A···4H4I4J4K4L8A···8H
order1222222···24···444448···8
size1111228···82···244884···4

32 irreducible representations

dim1111111122244
type+++++++++++++
imageC1C2C2C2C2C2C2C2D4D4D8C8:C222+ 1+4
kernelC42.263D4C42.12C4C22:D8C4:D8C4.4D8C8:4D4C2xC4:1D4C22.26C24C42C22xC4C2xC4C4C4
# reps1144221122822

Matrix representation of C42.263D4 in GL6(F17)

120000
16160000
00161500
001100
0024162
0002161
,
120000
16160000
001000
000100
00150160
001515016
,
660000
1400000
001615115
0001161
0000162
000001
,
060000
300000
00160160
00016116
000010
000001

G:=sub<GL(6,GF(17))| [1,16,0,0,0,0,2,16,0,0,0,0,0,0,16,1,2,0,0,0,15,1,4,2,0,0,0,0,16,16,0,0,0,0,2,1],[1,16,0,0,0,0,2,16,0,0,0,0,0,0,1,0,15,15,0,0,0,1,0,15,0,0,0,0,16,0,0,0,0,0,0,16],[6,14,0,0,0,0,6,0,0,0,0,0,0,0,16,0,0,0,0,0,15,1,0,0,0,0,1,16,16,0,0,0,15,1,2,1],[0,3,0,0,0,0,6,0,0,0,0,0,0,0,16,0,0,0,0,0,0,16,0,0,0,0,16,1,1,0,0,0,0,16,0,1] >;

C42.263D4 in GAP, Magma, Sage, TeX

C_4^2._{263}D_4
% in TeX

G:=Group("C4^2.263D4");
// GroupNames label

G:=SmallGroup(128,1937);
// by ID

G=gap.SmallGroup(128,1937);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,-2,253,120,758,219,675,4037,1027,124]);
// Polycyclic

G:=Group<a,b,c,d|a^4=b^4=d^2=1,c^4=b^2,a*b=b*a,a*c=c*a,d*a*d=a^-1,c*b*c^-1=a^2*b^-1,d*b*d=a^2*b,d*c*d=b^2*c^3>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<